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0.1 What this is
This short note summarizes my thoughts on the linear algebraic formulation of resistor network analysis with
respect to internal currents, potentials and total resistance. The underlying physical principles are Ohm’s and
Kirchhoff’s laws and the whole idea is nothing new. A slightly alternative (but equivalent) formulation can be
found in [1, pp. 426].

0.2 Problem statement
Consider a graph of n nodes, possibly connected by single electric resistors satisfying Ohm’s law. Denote by
Cij > 0 the conductance (i.e. inverse resistance) of the resistor directly connecting nodes i 6= j (equal to zero if
the two nodes are not connected). Note that Cij = Cji. Let Ui be the potential at node i and Iij = (Ui−Uj)·Cij

be the current flowing from node i to node j via their directly connecting resistor. For each node, let either an
externally fixed potential Ui

!
= U∗i be applied (e.g. grounded) or the net charge outflux

∑
j 6=i Iij =: Ii

!
= I∗i be

given (e.g. positive if output node, negative if input node and by Kirchhoff, zero otherwise). W.l.o.g. we shall
order nodes in that way that, the first k nodes have given potentials U∗i , and the remaining (n− k) nodes have
given net outflux I∗i . Note that by Kirchhoff, one needs to impose the consistency condition

n∑
i=k+1

I∗k = 0. (0.1)

We wish to solve find all potentials Ui and currents Iij within the network, subject to the above conditions.
To find the effective resistance R12 between any two nodes, say, node 1 and 2, one would have to solve the
problem with the conditions U∗1 = V , U∗2 = 0, I∗i = 0 ∀i ≥ 3 and set R12 := V/I1 (note that by (0.1) one has
I2 = −I1, i.e. what flows out of 1 flows into 2).

0.3 Formulation as linear algebraic problem
The above conditions read

Ui = U∗i ∀i ≤ k,∑
j 6=i

(Ui − Uj) · Cij = I∗i ∀i > k (0.2)

and represent a linear system of equations in the unknown potentials Ui. In matrix form,

A ·U = b, (0.3)
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where

Aij =

{
δij : i ≤ k
Ciδij − Cij · δij : i > k

, Ci :=
∑
j 6=i

Cij , b :=



U∗1
...
U∗k
I∗k+1
...
I∗n


. (0.4)

Note that we designate δij := (1 − δij), where δij is the Kronecker symbol. The currents Iij between nodes
i 6= j via their connecting resistors are given by

Iij = (Ui − Uj) · Cij , i 6= j, (0.5)

or in matrix form
I = diag(U) · C− C · diag(U), (0.6)

where

I :=

I11 . . . I1n
...

. . .
...

In1 . . . Inn

 , C :=

C11 . . . C1n

...
. . .

...
Cn1 . . . Cnn

 , Iii := 0, Cii := 0. (0.7)

0.4 Example 01: Given potential gradient
Consider a network of 4 nodes, with node 1 being subject to the externally imposed potential U∗1 = V and node
2 being grounded, i.e. U∗2 = 0. All other nodes are neither sinks nor sources, so that I∗3 = 0 = I∗4 . Suppose
every node i is connected to every node j 6= i with a resistor of equal conductance Cij = C. See Fig. 0.1 for an
illustration.
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Figure 0.1: On example 01.

Equation (0.3) reads 
1 0 0 0
0 1 0 0
−C −C 3C −C
−C −C −C 3C


︸ ︷︷ ︸

=A

·


U1

U2

U3

U4

 =


V
0
0
0

 .
(0.8)

Its unique solution is 
U1

U2

U3

U4

 =


V
0
V/2
V/2

 . (0.9)

The currents Iij through the resistors are given by (0.6). In particular

I12 = V C, I13 = V C/2, I14 = V C/2, (0.10)

so that I1 = 2V C. Hence, the effective resistance between node 1 and 2 is given by R12 = V/I1 = 1/(2C).
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0.5 Example 02: Given net current throughput
Now consider the same network of 4 nodes, where every node is connected to every node via a resistor of equal
conductance C. Let node 1 be a source and node 2 a sink, i.e. with a current I∗1 = I fed into the network
through 1 and extracted through node 2, all other nodes being neither sinks nor sources. Note that by (0.1)
I∗2 = −I∗1 . Then (0.3) reads

C ·


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


︸ ︷︷ ︸

=A

·


U1

U2

U3

U4

 =


I
−I
0
0

 .
(0.11)

Its solutions are 
U1

U2

U3

U4

 =


U
U
U
U

+


I/(4C)
−I/(4C)

0
0

 , (0.12)

where U is some arbitrary base potential. The currents Iij through the resistors are given by (0.6). In particular

I12 = I/2, I13 = I/4, I14 = I/4, (0.13)

so that indeed I1 = I. Hence, the effective resistance between node 1 and 2 is given by R12 = (U1 − U2)/I =
1/(2C), in accordance with the previous example.
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